Martin Manullang

Computer Vision Researcher & Tech-savvy

Digital Signal Processing (IF3024) | Martin Manullang

Digital Signal Processing Course

Digital Signal Processing (IF3024)

Course Schedule:
Tuesday, 7.30 - 10.00 WIB

Important links:

About The Course

Description

This course explores the techniques and methods of processing and analyzing digital signals. Students will learn the fundamental concepts of digital signals, signal transformation, and digital signal processing techniques. Additionally, the course covers the implementation of digital signals in various applications, including audio, video, and image processing.

Learning Outcomes

  1. Students are able to understand the basic concepts of digital signal processing
  2. Students are able to demonstrate basic mathematical concepts related to digital signal processing
  3. Students are able to apply basic processing techniques to common problems related to digital signal
  4. Students are able to design a digital signal processing system to solve a specific problem

Grade Distribution and Scale

A: >= 75 | AB: 70 - 74 | B: 65 - 69 | BC: 60 - 64 | C: 50 - 59 | D: 40 - 49 | E: < 40

Rounding: 0 decimal, 0.5 and above rounded up

  • Class Participation: 15%
  • Hands-on Assignment: 40%
  • Midterm Exam: 10%
  • Final Project: 35%

Class Regulation

Please refers to this: kontrak kuliah

References

- Richard G. Lyons and D. Lee Fugal. The Essential Guide to Digital Signal Processing. Prentice Hall, Englewood Cliffs, New Jersey, 2014. 
- James D. Broesch. Digital Signal Processing–Instant Access. Newnes, Burlington, MA, 2009.

Schedule and Materials

Slides and Lecturing Handouts

Week Topics Assignments / Grading Resources
1 Course Logistics
Introduction to Digital Signal Processing
  1. IDE Setup
2. How ANC Works - YT
3. ADC
4. Signal Visualization
2 Discrete Time System    
3,4 Working with Python for Digital Signal Processing

Sinusoids and Basic Signals
1. Sinusoids
2. Sampling
3. Aliasing
4. Basic Signal and Filters
  How do Complex Numbers relate to Real Signals? - Youtube
5,6,7 LTI Systems and Time Domain Analysis
1. LTI Systems Intro
2. Time Invariance Examples
3. Impulse Response
   
8 Mid-Term Week    
9 Discrete Fourier Transform (DFT)   1. Wavelet Transform
2. DFT
10,11 Frequency Domain
1. Frequency Domain Analysis
2. Harmonics
3. Discrete Fourier Transform
4. Frequency Response
5. Spectogram
   
12,13 Digital Filter    
14,15 Case Study: Measuring Respiration Signal from Video    
16 Final Project Presentation    

Whistleblower

Jika anda merasa perlu untuk mengirimkan / menginformasikan sesuatu kepada saya secara rahasia tanpa mengungkap identitas anda, silahkan ikuti panduan yang ada pada tautan berikut ini.

Anda tidak perlu memasukkan nama atau menggunakan akun/login untuk dapat mengirimkan pesan tersebut. Pesan whistleblower dapat digunakan untuk: